Regulatory Mechanisms of Hsp90
نویسنده
چکیده
The ability of Hsp90 to activate a disparate clientele implicates this chaperone in diverse biological processes. To accommodate such varied roles, Hsp90 requires a variety of regulatory mechanisms that are coordinated in order to modulate its activity appropriately. Amongst these, the master-regulator heat shock factor 1 (HSF1) is critically important in upregulating Hsp90 during stress, but is also responsible, through interaction with specific transcription factors (such as STAT1 and Strap/p300) for the integration of a variety of biological signals that ultimately modulate Hsp90 expression. Additionally, transcription factors, such as STAT1, STAT3 (including STAT1-STAT3 oligomers), NF-IL6, and NF-kB, are known to influence Hsp90 expression directly. Co-chaperones offer another mechanism for Hsp90 regulation, and these can modulate the chaperone cycle appropriately for specific clientele. Co-chaperones include those that deliver specific clients to Hsp90, and others that regulate the chaperone cycle for specific Hsp90-client complexes by modulating Hsp90s ATPase activity. Finally, post-translational modification (PTM) of Hsp90 and its co-chaperones helps too further regulate the variety of different Hsp90 complexes found in cells.
منابع مشابه
Mechanisms of Hsp90 regulation
Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat...
متن کاملHsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells.
Interferon regulatory factor 3 (IRF3) plays a crucial role in mediating cellular responses to virus intrusion. The protein kinase TBK1 is a key regulator inducing phosphorylation of IRF3. The regulatory mechanisms during IRF3 activation remain poorly characterized. In the present study, we have identified by yeast two-hybrid approach a specific interaction between IRF3 and chaperone heat-shock ...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملEffect of enviromental temperature on heat shock proteins (HSP30, HSP70, HSP90) and IGF-I mRNA expression in Sparus aurata
Ambient temperature is one of the most important environmental factors affecting physiological mechanisms and biochemical reactions of living organisms. Thus the effect of ambient temperature on HSPs and IGF-I gene expression levels in the liver and muscle tissues of Sparus aurata were investigated in this research. The levels of HSPs, and IGF-I gene expression of the liver and muscle of Sparus...
متن کاملDirect interaction of the cell division cycle 37 homolog inhibits endothelial nitric oxide synthase activity.
Endothelial NO synthase (eNOS) via the production of NO in the endothelium plays a key role in cardiovascular biology and is tightly regulated by co- and posttranslational mechanisms, phosphorylation, and protein-protein interactions. The cell division cycle 37 homolog (Cdc37) is a key heat shock protein 90 (Hsp90) cochaperone for protein kinase clients, and Akt/Hsp90 interaction is dependent o...
متن کامل